

 Navigation

 	
 index

 	
 next |

 	Apollo 2.0.2 documentation

Apollo

Apollo - An instantaneous, collaborative, genome annotation editor.

The application’s technology stack includes a Grails-based Java web application with flexible database backends and a
Javascript client that runs in a web browser as a JBrowse plugin.

You can find the latest release here: https://github.com/GMOD/Apollo/releases/latest and our setup guide: http://genomearchitect.readthedocs.io/en/latest/Setup.html

For general information on Apollo, go to:
https://genomearchitect.github.io/

For more information on JBrowse, please visit:
http://jbrowse.org

[image: https://travis-ci.org/GMOD/Apollo.png?branch=master]
Note: This documentation covers release versions 2.x of Apollo. For the 1.0.4 installation please refer to
the installation guide found at http://genomearchitect.readthedocs.io/en/1.0.4/

Contents:

	Pre-requisites
	Client pre-requisites

	Server-side pre-requisites

	Quick-start Developer’s guide
	Grails

	Groovy

	Get the code

	Verify install requirements

	Setting up the application

	Conclusion

	Setup guide
	Production pre-requisites

	Deploy the application

	Detailed build instructions

	Apollo Configuration
	Main configuration

	JBrowse Plugins

	Translation tables

	Logging configuration

	Canned comments

	Search tools

	Data adapters

	Supported annotation types

	Apache / Nginx configuration

	Upgrading existing instances

	Register admin in configuration

	Chado Export Configuration
	Create a Chado database

	Create a Chado user

	Load Chado schema and ontologies

	Configure data sources

	Export via UI

	Export via web services

	Data generation pipeline
	prepare-refseqs.pl

	flatfile-to-json.pl

	generate-names.pl

	add-bam-track.pl

	add-bw-track.pl

	Customizing different annotation types (advanced)

	Customizing features

	Bulk loading annotations to the user annotation track

	Disable draggable

	Troubleshooting guide
	Tomcat memory

	Tomcat permissions

	Errors with JBrowse

	Complaints about 8080 being in use

	Unable to open the h2 / default database for writing

	Grails cache errors

	Migration guide
	Migration from Evaluation to Production:

	Migration from 2.0.X to 2.0.Y on production:

	Migration from 1.0 to 2.0:

	Permissions guide
	Global

	Organism

	Automated testing architecture
	Notes about the test suites:

	Chado

	How to contribute code to Apollo
	Audience

	Basic principles of the Apollo-flavored GitHub Workflow

	Table of contents

	One Time Setup - Forking a Shared Repo

	Typical Development Cycle

	GitHub Tricks and Tips

	References and Documentation

	Architecture notes
	Overview and quick-start

	Overview

	Basic layout

	Schema/domain classes

	Running the application

	Main configuration

	GWT web-app

	Tests

	Command line tools
	Overview

	Web Service API
	What is the Web Service API?

	Web Services API

	Example Build Script on Unix with MySQL

 Copyright 2016, Apollo.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Apollo 2.0.2 documentation

Pre-requisites

Client pre-requisites

Apollo is a web-based application, so the only client side
requirement is a web browser. Apollo has been tested on Chrome, Firefox, and Safari
and matches the web browser requirements for JBrowse (see jbrowse.org [http://jbrowse.org] for details).

Server-side pre-requisites

Note: see the Apollo 2.x quick-start for the
quickest way to take care of pre-requisites.

	System pre-requisites (see quick-start guide for simple setup)
	Any Unix like system (e.g., Unix, Linux, Mac OS X)

	Servlet container (must support servlet spec 3.0+) such as tomcat 7

	Java 7+

	Grails (easiest way to install is using GVM, see Apollo 2.x quick-start for this step)

	Ant 1.8+ (most package managers will have this)

	A database (RDMS) system. Sample configurations for PostgreSQL and MySQL are available. H2 configuration does not require any manual installation.

	Basic tools like Git, Curl, a text editor, etc

	Data generation pipeline pre-requisites (for full list see http://gmod.org/wiki/JBrowse_Configuration_Guide)
	System packages
	libpng12-0 (optional, for JBrowse imagetrack)

	libpng12-dev (optional, for JBrowse imagetrack)

	zlib1g (Debian/Ubuntu)

	zlib1g-dev (Debian/Ubuntu)

	zlib (RedHat/CentOS)

	zlib-devel (RedHat/CentOS)

	libexpat1-dev (Debian/Ubuntu)

	expat-dev (RedHat/CentOS)

	Perl pre-requisites:
	Apollo will automatically try to install all perl-pre-requisites

	If you are building Apollo in “release” mode, perl 5.10 or up will be required

	Sequence search (optional)
	Blat (download Linux [http://hgdownload.cse.ucsc.edu/admin/exe/linux.x86_64/] or OSX [http://hgdownload.cse.ucsc.edu/admin/exe/macOSX.x86_64/] binaries)

Package manager commands

To install system pre-requisites, you can try the following commands

Debian/Ubuntu

sudoapt-getinstallopenjdk-7-jdkcurl libexpat1-devpostgresqlpostgresql-server-dev-alltomcat7 git

CentOS/RedHat

sudoyuminstallpostgresqlpostgresql-server postgresql-develexpat-devel tomcat git curl

MacOSX/Homebrew

brewinstallpostgresqltomcat git

 Copyright 2016, Apollo.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Apollo 2.0.2 documentation

Quick-start Developer’s guide

Here we will introduce how to setup Apollo on your server. In general, there are two modes of deploying Apollo.

There is “development mode” where the application is launched in a temporary server (automatically) and there is
“production mode”, which will typically require an external separate database and tomcat server where you can deploy the
generated war file.

This guide will cover the “development mode” scenario which should be easy to start. To setup in a production environment, please see the setup guide.

Grails

Installing Grails is made easier by using SDKMAN [http://sdkman.io/] (formerly GVM) which can automatically setup
grails for you.

	curl -s http://get.sdkman.io | bash

	sdk install grails 2.5.4

	sdk install gradle 2.11

If you don’t install Grails or Gradle using SDKMAN, these will automatically be downloaded in the current directory.

Groovy

It is not required but you can also install the groovy command line

sdk install groovy

Get the code

To setup Apollo, you can download our latest release [https://github.com/GMOD/Apollo/releases/latest] from our official releases [https://github.com/GMOD/Apollo/releases/]. Version 2.0.2 is available as a .tar.gz [https://github.com/GMOD/Apollo/archive/2.0.2.tar.gz] or a .zip [https://github.com/GMOD/Apollo/archive/2.0.2.zip] file.

Alternatively you can check it out from git as directly as follows:

	git clone https://github.com/GMOD/Apollo.git Apollo

	cd Apollo

	git checkout 2.0.2 # otherwise you will be getting the more active / less tested master branch

Verify install requirements

We can now perform a quick-start of the application in “development mode” with this command:

./apollo run-local

The jbrowse and perl pre-requisites will be installed during this step, and if there is a success, then a temporary
server will be automatically launched at http://localhost:8080/apollo.

Note: You can also supply a port number e.g. apollo run-local 8085 if there are conflicts on port 8080.

Also note: if there are any errors at this step, check the setup.log file for errors. You can refer to the
troubleshooting guide and often it just means the pre-requisites or perl modules failed.

Also also note: the “development mode” uses an in-memory H2 database for storing data by default. The setup guide will
show you how to configure custom database settings.

Setting up the application

Setup a production server

To setup in a production environment, please see the setup guide. To setup (as opposed to a development server as above), you must properly configure a servlet container like Tomcat or Jetty with sufficient memory.

Adding data to Apollo

After we have a server setup, we will want to add a new organism to the panel. If you are a new user, you will want to
setup this data with the jbrowse pre-processing scripts. You can see the data loading guide for more
details, but essentially, you will want to load a reference genome and an annotations file at a minimum:

bin/prepare-refseqs.pl --fasta yourgenome.fasta --out /opt/apollo/data

bin/flatfile-to-json.pl --gff yourannotations.gff --type mRNA \
 --trackLabel AnnotationsGff --out /opt/apollo/data

Login to the web interface

After you access your application at http://localhost:8080/apollo/ then you will be prompted for login information

[image: Login first time]

Figure 1. “Register First Admin User” screen allows you to create a new admin user.

[image: Organism configuration]

Figure 2. Navigate to the “Organism tab” and select “Create new organism”. Then enter the new information for your
organism. Importantly, the data directory refers to a directory that has been prepared with the JBrowse data loading
scripts from the command line. See the data loading section for details.

[image: Open annotator]

Figure 3. Open up the new organism from the drop down tab on the annotator panel.

Conclusion

If you completed this setup, you can then begin adding new users and performing annotations. Please continue to the
setup guide for deploying the webapp to production or visit the troubleshooting guide
if you encounter problems during setup.

 Copyright 2016, Apollo.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Apollo 2.0.2 documentation

Setup guide

The quick-start guide showed how to quickly launch a temporary instance of Apollo, but deploying the application to
production normally involves some extra steps.

The general idea behind your deployment is to create a apollo-config.groovy file from some existing sample files which
have sample settings for various database engines.

Production pre-requisites

You will minimally need to have Java 7 or greater, Grails [https://grails.org/], git [https://git-scm.com/],
ant [http://ant.apache.org/], a servlet container e.g. tomcat7+ [http://tomcat.apache.org/], jetty, or resin. An
external database such as PostgreSQL or MySQL is generally used for production, but instructions for the H2 database is
also provided.

Important note: The default memory for Tomcat and Jetty is insufficient to run Apollo (and most other web apps).You should increase the memory according to these instructions.

Other possible build settings for JBrowse [http://gmod.org/wiki/JBrowse_Configuration_Guide] (an Ubuntu install):

 sudo apt-get install zlib1g-dev libpng-dev libgd2-noxpm-dev build-essential nodejs git

Build settings for Apollo specifically. Recent versions of tomcat7 will work. Oracle 7+ Java [https://www.digitalocean.com/community/tutorials/how-to-install-java-with-apt-get-on-ubuntu-16-04] versions of java) will work as will Open-JDK 7:

 sudo apt-get install tomcat8 ant openjdk-8-jdk

Database configuration

Apollo supports several database backends, and you can choose sample configurations from using H2, Postgres, or
MySQL by default.

Each has a file called sample-h2-apollo-config.groovy or sample-postgres-apollo-config.groovy that is designed to be
renamed to apollo-config.groovy before running apollo deploy. Additionally there is a
sample-docker-apollo-config.groovy which allows control of the configuration via environment variables.

Furthermore, the apollo-config.groovy has different groovy environments for test, development, and production modes.
The environment will be selected automatically selected depending on how it is run, e.g:

	apollo deploy or apollo release use the production environment (i.e. when you copy the war file to your production
server apollo run-local or apollo debug use the development environment (i.e. when you are running it locally)

	apollo test uses the test environment (i.e. only when running unit tests)

Configure for H2:

	H2 is an embedded database engine, so no external setups are needed. Simply copy sample-h2-apollo-config.groovy to
apollo-config.groovy.

Configure for PostgreSQL:

	Create a new database with postgres and add a user for production mode. Here are a few ways to do this in PostgreSQL.

	Copy the sample-postgres-apollo-config.groovy to apollo-config.groovy.

Configure for MySQL:

	Create a new MySQL database for production mode (i.e. run ``create database `apollo-production``` in the mysql
console) and copy the sample-postgres-apollo-config.groovy to apollo-config.groovy.

Configure for Docker:

	Set up and export all of the environment variables you wish to configure. At bare minimum you will likely wish to set
WEBAPOLLO_DB_USERNAME, WEBAPOLLO_DB_PASSWORD, WEBAPOLLO_DB_DRIVER, WEBAPOLLO_DB_DIALECT, and
WEBAPOLLO_DB_URI

	Create a new database in your chosen database backend and copy the sample-docker-apollo-config.groovy to
apollo-config.groovy.

	Instructions and a script for launching docker with apollo and PostgreSQL [https://github.com/GMOD/docker-apollo].

Database schema

After you startup the application, the database schema (tables, etc.) is automatically setup. You don’t have to
initialize any database schemas yourself.

Deploy the application

The apollo run-local command only launches a temporary server and should really not be used in production, so to
deploy to production, we build a new WAR file with the apollo deploy command. After you have setup your
apollo-config.groovy file, and it has the appropriate username, password, and JDBC URL in it, then we can run the
command:

./apollo deploy

This command will package the application and it will download any missing pre-requisites (jbrowse) into a WAR file in
the “target/” subfolder. After it completes, you can then copy the WAR file (e.g. apollo-2.0.2.war) from the target folder
to the web-app folder of your web container [https://en.wikipedia.org/wiki/Web_container#open_source_Web_containers] installation.
If you name the file apollo.war in your webapps folder, then you can access your app at “http://localhost:8080/apollo”

We test primarily on Apache Tomcat (7.0.62+ and 8) [http://tomcat.apache.org/]. Make sure to set your Tomcat memory [https://github.com/GMOD/Apollo/blob/master/docs/Troubleshooting.html#tomcat-memory] to an appropriate size or Apollo will run slow / crash.

Alternatively, as we alluded to previously, you can also launch a temporary instance of the server which is useful for
testing

./apollo run-local 8085

This temporary server will be accessible at “http://localhost:8085/apollo”

Note on database settings

If you use the apollo run-local command, then the “development” section of the apollo-config.groovy is used (or an
temporary in-memory H2 database is used if no apollo-config.groovy exists).

If you use the WAR file generated by the apollo deploy command on your own webserver, then the “production” section of
the apollo-config.groovy is used.

Detailed build instructions

While the shortcut apollo deploy takes care of basic application deployment, understanding the full build process of
Apollo can help you to optimize and improve your deployed instances.

To learn more about the architecture of webapollo, view the architecture guide but the main idea here
is to learn how to use apollo release to construct a build that includes javascript minimization

Pre-requisites for Javascript minimization

In addition to the system pre-requisites, the javascript compilation will use nodejs, which can be
installed from a package manager on many platforms. Recommended setup for different platforms:

sudo apt-get install nodejs
sudo yum install epel-release npm
brew install node

Install extra perl modules

Building apollo in release mode also requires some extra Perl modules, namely Text::Markdown and DateTime. One way to
install them:

bin/cpanm -l extlib DateTime Text::Markdown

Performing the javascript minimization

To build a Apollo release with Javascript minimization, you can use the command

./apollo release

This will compile JBrowse and Apollo javascript code into minimized files so that the number of HTTP requests that the
client needs to make are reduced.

In all other respects, apollo release is exactly the same as apollo deploy though.

Performing active development

To perform active development of the codebase, use

./apollo debug

This will launch a temporary instance of Apollo by running grails run-app and ant devmode at the same time,
which means that any changes to the Java files will be picked up, allowing fast iteration.

If you modify the javascript files (i.e. the client directory), you can run scripts/copy_client.sh and these will be
picked up on-the-fly too.

 Copyright 2016, Apollo.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Apollo 2.0.2 documentation

Apollo Configuration

Apollo includes some basic configuration parameters that are specified in configuration files. The most important
parameters are the database parameters in order to get Apollo up and running. Other options besides the database
parameters can be configured via the config files, but note that many parameters can also be configured via the web
interface.

Note: Configuration options may change over time, as more configuration items are integrated into the web interface.

Main configuration

The main configuration settings for Apollo are stored in grails-app/conf/Config.groovy, but you can override settings
in your apollo-config.groovy file (i.e. the same file that contains your database parameters). Here are the defaults
that are defined in the Config.groovy file:

// default apollo settings
apollo {
 default_minimum_intron_size = 1
 history_size = 0
 overlapper_class = "org.bbop.apollo.sequence.OrfOverlapper"
 track_name_comparator = "/config/track_name_comparator.js"
 use_cds_for_new_transcripts = true
 user_pure_memory_store = true
 translation_table = "/config/translation_tables/ncbi_1_translation_table.txt"
 is_partial_translation_allowed = false // unused so far
 get_translation_code = 1
 sequence_search_tools = [
 blat_nuc: [
 search_exe: "/usr/local/bin/blat",
 search_class: "org.bbop.apollo.sequence.search.blat.BlatCommandLineNucleotideToNucleotide",
 name: "Blat nucleotide",
 params: ""
],
 blat_prot: [
 search_exe: "/usr/local/bin/blat",
 search_class: "org.bbop.apollo.sequence.search.blat.BlatCommandLineProteinToNucleotide",
 name: "Blat protein",
 params: ""
 tmp_dir: "/opt/apollo/tmp" //optional param, uses system tmp dir by default
]
]

 splice_donor_sites = ["GT"]
 splice_acceptor_sites = ["AG"]
 gff3.source= "." bootstrap = false

 info_editor = {
 feature_types = "default"
 attributes = true
 dbxrefs = true
 pubmed_ids = true
 go_ids = true
 comments = true
 }
}

These settings are essentially the same familiar parameters from a config.xml file from previous Apollo versions. The
defaults are generally sufficient, but as noted above, you can override any particular parameter in your
apollo-config.groovy file, e.g. you can add override configuration any given parameter as follows:

grails {
 apollo.get_translation_code = 1
 apollo {
 use_cds_for_new_transcripts = true
 default_minimum_intron_size = 1
 get_translation_code = 1 // identical to the dot notation
 }
}

JBrowse Plugins

You can add / remove jbrowse plugins by copying a jbrowse section into your apollo-config.groovy.

There are two sections, plugins and main, which specifies the jbrowse version.

The main section can either contain a git block or a url block, both of which require url.
If a git block a tag or branch can be specified.

In the plugins section, options are included (part of the JBrowse release), url (requiring a url parameter),
or git, which can include a tag or branch as above.

Options for alwaysRecheck and alwaysRepull always check the branch and tag and always pull respectiviely.

jbrowse {
 git {
 url= "https://github.com/GMOD/jbrowse"
// tag = "1.12.1-release"
 branch = "master"
 alwaysPull = true
 alwaysRecheck = true
 }
// url {
// // always use dev for apollo
// url = "http://jbrowse.org/wordpress/wp-content/plugins/download-monitor/download.php?id=102"
// type ="zip"
// fileName = "JBrowse-1.12.0-dev"
// }
 plugins {
 WebApollo{
 included = true
 }
 NeatHTMLFeatures{
 included = true
 }
 NeatCanvasFeatures{
 included = true
 }
 RegexSequenceSearch{
 included = true
 }
 HideTrackLabels{
 included = true
 }
// MyVariantInfo {
// git = 'https://github.com/GMOD/myvariantviewer'
// branch = 'master'
// alwaysRecheck = "true"
// alwaysPull = "true"
// }
// SashimiPlot {
// git = 'https://github.com/cmdcolin/sashimiplot'
// branch = 'master'
// alwaysPull = "true"
// }
 }
}

Translation tables

The default translation table is 1 [http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi#SG1]

To use one of the others [http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi] set the number in the apollo-config.groovy file as:

apollo {
...
 get_translation_code = "11"
}

These correspond to the NCBI translation tables.

To add a custom translation table, you can add it to to the web-app/translation_tables directory as:

web-app/translation_tables/ncbi_customname_translation_table.txt

and specify the customname as:

In apollo-config.groovy:

apollo {
...
 get_translation_code = "customname"
}

Logging configuration

To over-ride the default logging, you can look at the logging configurations from
Config.groovy [https://github.com/GMOD/Apollo/blob/master/grails-app/conf/Config.groovy] and override or modify them in
apollo-config.groovy.

log4j.main = {
 error 'org.codehaus.groovy.grails.web.servlet', // controllers
 'org.codehaus.groovy.grails.web.pages', // GSP
 'org.codehaus.groovy.grails.web.sitemesh', // layouts
 ...
 warn 'grails.app'
}

Additional links for log4j:

	Advanced log4j configuration:
http://blog.andresteingress.com/2012/03/22/grails-adding-more-than-one-log4j-configurations/

	Grails log4j guide: http://grails.github.io/grails-doc/2.4.x/guide/single.html#logging

Canned comments

Canned comments are configured via the admin panel on the web interface, so they are not currently configured via the
config files.

View your instances page for more details e.g. http://localhost:8080/apollo/cannedComment/

Search tools

Apollo can be configured to work with various sequence search tools. UCSC’s BLAT tool is configured by default and you
can customize it as follows:

sequence_search_tools = [
 blat_nuc: [
 search_exe: "/usr/local/bin/blat",
 search_class: "org.bbop.apollo.sequence.search.blat.BlatCommandLineNucleotideToNucleotide",
 name: "Blat nucleotide",
 params: ""
],
 blat_prot: [
 search_exe: "/usr/local/bin/blat",
 search_class: "org.bbop.apollo.sequence.search.blat.BlatCommandLineProteinToNucleotide",
 name: "Blat protein",
 params: "",
 tmp_dir: "/opt/apollo/tmp" //optional, uses system tmp dir by default
]
 your_custom_search_tool: [
 search_exe: "/usr/local/customtool",
 search_class: "org.your.custom.Class",
 name: "Custom search"
]
]

When you setup your organism in the web interface, you can then enter the location of the sequence search database for
BLAT.

Note: If the BLAT binaries reside elsewhere on your system, edit the search_exe location in the config to point to your
BLAT executable.

Data adapters

Data adapters for Apollo provide the methods for exporting annotation data from the application. By default, GFF3
and FASTA adapters are supplied. They are configured to query your IOService URL e.g.
http://localhost:8080/apollo/IOService with the customizable query

data_adapters = [[
 permission: 1,
 key: "GFF3",
 data_adapters: [[
 permission: 1,
 key: "Only GFF3",
 options: "output=file&format=gzip&type=GFF3&exportGff3Fasta=false"
],
 [
 permission: 1,
 key: "GFF3 with FASTA",
 options: "output=file&format=gzip&type=GFF3&exportGff3Fasta=true"
]]
],
[
 permission: 1,
 key : "FASTA",
 data_adapters :[[
 permission : 1,
 key : "peptide",
 options : "output=file&format=gzip&type=FASTA&seqType=peptide"
],
 [
 permission : 1,
 key : "cDNA",
 options : "output=file&format=gzip&type=FASTA&seqType=cdna"
],
 [
 permission : 1,
 key : "CDS",
 options : "output=file&format=gzip&type=FASTA&seqType=cds"
]]
]]

Default data adapter options

The options available for the data adapters are configured as follows

	type: GFF3 or FASTA

	output: can be file or text. file exports to a file and provides a UUID link for downloads, text just outputs to
stream.

	format: can by gzip or plain. gzip offers gzip compression of the exports, which is the default.

	exportSequence: true or false, which is used to include FASTA sequence at the bottom of a GFF3 export

Supported annotation types

Many configurations will require you to define which annotation types the configuration will apply to. Apollo supports
the following “higher level” types (from the Sequence Ontology):

	sequence:gene

	sequence:pseudogene

	sequence:transcript

	sequence:mRNA

	sequence:tRNA

	sequence:snRNA

	sequence:snoRNA

	sequence:ncRNA

	sequence:rRNA

	sequence:miRNA

	sequence:repeat_region

	sequence:transposable_element

Apache / Nginx configuration

Oftentimes, admins will put use Apache or Nginx as a reverse proxy so that the requests to a main server can be
forwarded to the tomcat server. This setup is not necessary, but it is a very standard configuration.

Note that we use the SockJS library, which will downgrade to long-polling if websockets are not available, but since
websockets are preferable, it helps to take some extra steps to ensure that the websocket calls are proxied or forwarded
in some way too.
If you are using tomcat 7, please make sure to use the most recent stable version, which supports web sockets by default. Using older versions (e.g. 7.0.26) websockets may not be included by default and you will need to include an additional .jar file.

Apache Proxy

The most simple setup on apache is as follows.. Here is the most basic configuration for a reverse proxy:

ProxyPass /apollo http://localhost:8080/apollo
ProxyPassReverse /apollo http://localhost:8080/apollo

Note: that a reverse proxy does not use ProxyRequests On (which turns on forward proxying, which is dangerous)

Also note: This setup will use downgrade to use AJAX long-polling without the websocket proxy being configured.

To setup the proxy for websockets, you can use mod_proxy_wstunnel, first load the module

LoadModule proxy_wstunnel_module libexec/apache2/mod_proxy_wstunnel.so

Then add extra ProxyPass calls for the websocket “endpoint” called /apollo/stomp

ProxyPass /apollo/stomp ws://localhost:8080/apollo/stomp
ProxyPassReverse /apollo/stomp ws://localhost:8080/apollo/stomp

Debugging proxy issues

Note: if your webapp is accessible but it doesn’t seem like you can login, you may need to customize the
ProxyPassReverseCookiePath

For example, if you proxied to a different path, you might have something like this

ProxyPass /testing http://localhost:8080
ProxyPassReverse /testing http://localhost:8080
ProxyPassReverseCookiePath / /testing

Then your application might be accessible from http://localhost/testing/apollo

Nginx Proxy (from version 1.4 on)

Your setup may vary, but setting the upgrade headers can be used for the websocket configuration
http://nginx.org/en/docs/http/websocket.html

 map $http_upgrade $connection_upgrade {
 default upgrade;
 '' close;
 }

 server {
 # Main
 listen 80; server_name myserver;

 # http://nginx.org/en/docs/http/websocket.html
 location /ApolloSever {
 proxy_http_version 1.1;
 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header Connection $connection_upgrade;
 proxy_pass http://127.0.0.1:8080;
 }
 }

Upgrading existing instances

There are several scripts for migrating from older instances. See the migration guide for details.
Particular notes:

Note: Apollo does not require using the add-webapollo-plugin.pl because the plugin is loaded implicitly by
including the client/apollo/json/annot.json file at run time.

Upgrading existing JBrowse data stores

It is not necessary to change your existing JBrowse data directories to use Apollo 2.x, you can just point to existing
data directories from your previous instances.

More information about JBrowse [http://jbrowse.org/] can also be found in their FAQ [http://gmod.org/wiki/JBrowse_FAQ].

Adding custom CSS for track styling for JBrowse

There are a variety of different ways to include new CSS into the browser, but the easiest might be the following

Add the following statement to your trackList.json:

 "css" : "data/yourfile.css"

Then just place your CSS file in your organism’s data directory.

Adding custom CSS globally for JBrowse

If you want to add CSS that is used globally for JBrowse, you can edit the CSS in the client/apollo/css folder, but
since you need to re-deploy the app every time for updates, it is easier to just edit the data directories for your
organisms (you do not need to re-deploy the app when you are editing organism specific data, since this is outside of
the webapp directory and is not deployed with the WAR file)

Adding custom CSS globally for the GWT app

If you want to style the GWT sidebar, generally the bootstrap theme is used but extra CSS is also included from
web-app/annotator/theme.css which overrides the bootstrap theme

Adding / using proxies

If you are https, or choose to use separate services rather than the default provided, you can setup a pass-through proxy or modify a particular URL.

This service is only available to logged-in users.

The internal proxy URL is:

<apollo url>/proxy/request/<encoded_proxy_url>/

For example if your URL the URL we want to proxy:

http://golr.geneontology.org/solr/select

encoded:

http%3A%2F%2Fgolr.geneontology.org%2Fsolr%2Fselect

If you user is logged-in and you pass in:

http://localhost/apollo/proxy/request/http%3A%2F%2Fgolr.geneontology.org%2Fsolr%2Fselect?testkey=asdf&anotherkey=zxcv

This will get proxied to:

http://golr.geneontology.org/solr/select?testkey=asdf&anotherkey=zxcv

If you choose to use another proxy service, you can go to the “Proxy” page (as administrator).
Internally used proxies are provided by default.
The order the final URL is chosen in is ‘active’ and then ‘fallbackOrder’.

Register admin in configuration

If you want to register your admin user in the configuration, you can add a section to your apollo-config.groovy like:

apollo{
// other stuff
 admin{
 username = "super@duperadmin.com"
 password = System.getenv("APOLLO_ADMIN_PASSWORD")?:"demo"
 firstName = "Super"
 lastName = "Admin"
 }
}

It should only add the user a single time. User details can be retrieved from passed in text or from the environment depending on user preference.

Admin users will be added on system startup. Duplicate additions will be ignored.

 Copyright 2016, Apollo.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Apollo 2.0.2 documentation

Chado Export Configuration

Following are the steps for setting up a Chado data source that is compatible with Apollo Chado Export.

Create a Chado database

First create a database in PostgreSQL for Chado.

Note: Initial testing has only been done on PostgreSQL.

Default name is apollo-chado and apollo-production-chado for development and production environment, respectively.

Create a Chado user

Now, create a database user that has all access privileges to the newly created Chado database.

Load Chado schema and ontologies

Apollo assumes that the Chado database has Chado schema v1.2 or greater and has the following ontologies loaded:

	Relations Ontology

	Sequence Ontology

	Gene Ontology

The quickest and easiest way to do this is to use prebuilt Chado schemas.
Apollo provides a prebuilt Chado schema with the necessary ontologies. (thanks to Eric Rasche at Center for Phage Technology, TAMU [https://cpt.tamu.edu/computer-resources/chado-prebuilt-schema/])

Users can load this prebuilt Chado schema as follows:

scripts/load_chado_schema.sh -u <USER> -d <CHADO_DATABASE> -h <HOST> -p <PORT> -s <CHADO_SCHEMA_SQL>

If there is already an existing database with the same name and if you would like to dump and create a clean database:

scripts/load_chado_schema.sh -u <USER> -d <CHADO_DATABASE> -h <HOST> -p <PORT> -s <CHADO_SCHEMA_SQL> -r

The ‘-r’ flag tells the script to perform a pg_dump if <CHADO_DATABASE> exists.

e.g.,

scripts/load_chado_schema.sh -u postgres -d apollo-chado -h localhost -p 5432 -r -s chado-schema-with-ontologies.sql.gz

The file chado-schema-with-ontologies.sql.gz can be found in Apollo/scripts/ directory.

The load_chado_schema.sh script creates log files which can be inspected to see if loading the schema was successful.

Note that you will also need to do this for your testing and production instances, as well.

Configure data sources

In apollo-config.groovy, uncomment the configuration for datasource_chado and specify the proper database name, database user name and database user password.

Export via UI

Users can export existing annotations to the Chado database via the Annotator Panel -> Ref Sequence -> Export.

Export via web services

Users can also leverage the Apollo web services API to export annotations to Chado.
As a demonstration, a sample script, export_annotations_to_chado.groovy is provided.

Usage for the script:

export_annotations_to_chado.groovy -organism ORGANISM_COMMON_NAME -username APOLLO_USERNAME -password APOLLO_PASSWORD -url http://localhost:8080/apollo

 Copyright 2016, Apollo.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Apollo 2.0.2 documentation

Data generation pipeline

The data generation pipeline is based on the typical jbrowse commands such as prepare-refseqs.pl and
flatfile-to-json.pl, and these scripts are automatically copied to a local bin/ directory when you run the setup scripts
(e.g. apollo run-local or apollo deploy or install_jbrowse.sh).

If you don’t see a bin/ subdirectory containing these scripts after running the setup, check setup.log and check the
troubleshooting guide for additional tips or feel free to post the error and setup.log on GitHub
or the mailing list.

prepare-refseqs.pl

The first step to setup the genome browser is to load the reference genome data. We’ll use the prepare-refseqs.pl
script to output to the data directory.

bin/prepare-refseqs.pl --fasta pyu_data/scf1117875582023.fa --out /opt/apollo/data

Note: the output directory is used later when we load the organism into the browser with the “Create organism” form

flatfile-to-json.pl

The flatfile-to-json.pl script can be used to load GFF3 files and you can customize the feature types. Here, we’ll start
off by loading data from the MAKER GFF for the Pythium ultimum data. The simplest loading command specifies a
–trackLabel, the –type of feature to load, the –gff file and the –out directory.

bin/flatfile-to-json.pl --gff pyu_data/scf1117875582023.gff --type mRNA \
 --trackLabel MAKER --out /opt/apollo/data

Note: you can also use the command bin/maker2jbrowse for loading the MAKER data.

Also see the section Customizing features section for more information on
customizing the CSS styles of the Apollo features.

Note: Apollo uses features that are loaded at the “transcript” level. If your GFF3 has “gene” features with
“transcript”/”mRNA” child features, make sure that you use the argument –type mRNA or –type transcript.

generate-names.pl

Once data tracks have been created, you can generate a searchable index of names using the generate-names.pl script:

bin/generate-names.pl --verbose --out /opt/apollo/data

This is optional but useful step to index of names and features and refseq names. If you have some tracks that have
millions of features, consider only indexing select tracks with the –tracks argument or disabling autocomplete with
--completionLimit 0.

add-bam-track.pl

Apollo natively supports BAM files and the file can be read (in chunks) directly from the server with no
preprocessing.

To add a BAM track, copy the .bam and .bam.bai files to your data directory, and then use the add-bam-track.pl to add
the file to the tracklist.

mkdir /opt/apollo/data/bam
cp pyu_data/simulated-sorted.bam /opt/apollo/data/bam
cp pyu_data/simulated-sorted.bam.bai /opt/apollo/data/bam
bin/add-bam-track.pl --bam_url bam/simulated-sorted.bam \
 --label simulated_bam --key "simulated BAM" -i /opt/apollo/data/trackList.json

Note: the bam_url parameter is a URL that is relative to the data directory. It is not a filepath! Also, the .bai will
automatically be located if it is simply the .bam with .bai appended to it.

add-bw-track.pl

Apollo also has native support for BigWig files (.bw), so no extra processing of these files is required either.

To use this, copy the BigWig data into the jbrowse data directory and then use the add-bw-track.pl to add the file to
the tracklist.

mkdir /opt/apollo/data/bigwig
cp pyu_data/*.bw /opt/apollo/data/bigwig
bin/add-bw-track.pl --bw_url bigwig/simulated-sorted.coverage.bw \
 --label simulated_bw --key "simulated BigWig"

Note: the bw_url parameter is a URL that is relative to the data directory. It is not a filepath!

Customizing different annotation types (advanced)

To change how the different annotation types look in the “User-created annotation” track, you’ll need to update the
mapping of the annotation type to the appropriate CSS class. This data resides in client/apollo/json/annot.json, which
is a file containing Apollo tracks that is loaded by default. You’ll need to modify the JSON entry whose label is
Annotations. Of particular interest is the alternateClasses element. Let’s look at that default element:

"alternateClasses": {
 "pseudogene" : {
 "className" : "light-purple-80pct",
 "renderClassName" : "gray-center-30pct"
 },
 "tRNA" : {
 "className" : "brightgreen-80pct",
 "renderClassName" : "gray-center-30pct"
 },
 "snRNA" : {
 "className" : "brightgreen-80pct",
 "renderClassName" : "gray-center-30pct"
 },
 "snoRNA" : {
 "className" : "brightgreen-80pct",
 "renderClassName" : "gray-center-30pct"
 },
 "ncRNA" : {
 "className" : "brightgreen-80pct",
 "renderClassName" : "gray-center-30pct"
 },
 "miRNA" : {
 "className" : "brightgreen-80pct",
 "renderClassName" : "gray-center-30pct"
 },
 "rRNA" : {
 "className" : "brightgreen-80pct",
 "renderClassName" : "gray-center-30pct"
 },
 "repeat_region" : {
 "className" : "magenta-80pct"
 },
 "transposable_element" : {
 "className" : "blue-ibeam",
 "renderClassName" : "blue-ibeam-render"
 }
}

For each annotation type, you can override the default class mapping for both className and renderClassName to use
another CSS class. Check out the Customizing features section for more
information on customizing the CSS classes.

Customizing features

The visual appearance of biological features in Apollo (and JBrowse) is handled by CSS stylesheets with HTMLFeatures
tracks. Every feature and subfeature is given a default CSS “class” that matches a default CSS style in a CSS
stylesheet. These styles are are defined in client/apollo/css/track_styles.css and
client/apollo/css/webapollo_track_styles.css. Additional styles are also defined in these files, and can be used by
explicitly specifying them in the –className, –subfeatureClasses, –renderClassname, or –arrowheadClass parameters to
flatfile-to-json.pl (see data loading section).

Apollo differs from JBrowse in some of it’s styling, largely in order to help with feature selection, edge-matching,
and dragging. Apollo by default uses invisible container elements (with style class names like “container-16px”) for
features that have children, so that the children are fully contained within the parent feature. This is paired with
another styled element that gets rendered within the feature but underneath the subfeatures, and is specified by the
--renderClassname argument to flatfile-to-json.pl. Exons are also by default treated as special invisible
containers, which hold styled elements for UTRs and CDS.

It is relatively easy to add other stylesheets that have custom style classes that can be used as parameters to
flatfile-to-json.pl. For example, you can create /opt/apollo/data/custom_track_styles.css which contains two new
styles:

 .gold-90pct,
 .plus-gold-90pct,
 .minus-gold-90pct {
 background-color: gold;
 height: 90%;
 top: 5%;
 border: 1px solid gray;
 }

 .dimgold-60pct,
 .plus-dimgold-60pct,
 .minus-dimgold-60pct {
 background-color: #B39700;
 height: 60%;
 top: 20%;
 }

In this example, two subfeature styles are defined, and the top property is being set to (100%-height)/2 to assure
that the subfeatures are centered vertically within their parent feature. When defining new styles for features, it is
important to specify rules that apply to plus-stylename and minus-stylename in addition to stylename, as Apollo
adds the “plus-” or “minus-” to the class of the feature if the the feature has a strand orientation.

You need to tell Apollo where to find these styles by modifying the JBrowse config or the plugin config, e.g. by
adding this to the trackList.json

 "css" : "data/custom_track_styles.css"

Then you may use these new styles using –subfeatureClasses, which uses the specified CSS classes for your features in
the genome browser, for example:

 bin/flatfile-to-json.pl --gff MyFile.gff \
 --type mRNA --trackLabel MyTrack \
 --subfeatureClasses '{"CDS":"gold-90pct","UTR": "dimgold-60pct"}'

Bulk loading annotations to the user annotation track

GFF3

You can use the tools/data/add_transcripts_from_gff3_to_annotations.pl script to bulk load GFF3 files with transcripts
to the user annotation track. Let’s say we want to load our maker.gff transcripts.

 tools/data/add_transcripts_from_gff3_to_annotations.pl \
 -U localhost:8080/Apollo -u web_apollo_admin -p web_apollo_admin \
 -i scf1117875582023.gff -t mRNA -o "name of organism"

The default options should be handle GFF3 most files that contain genes, transcripts, and exons.

You can still use this script even if the GFF3 file that you are loading does not contain transcripts and exon types.
Let’s say we want to load match and match_part features as transcripts and exons respectively. We’ll use the
blastn.gff file as an example.

 tools/data/add_transcripts_from_gff3_to_annotations.pl \
 -U localhost:8080/Apollo -u web_apollo_admin -p web_apollo_admin \
 -i cf1117875582023gff -t match -e match_part -o "name of organism"

You can view the add_transcripts_from_gff3_to_annotations.pl help (-h) option for all available options.

Disable draggable

Apollo has a number of specific track config parameters

overrideDraggable (boolean)
determines whether to transform the alignments tracks to draggable alignments

overridePlugins (boolean)
determines whether to transform alignments and sequence tracks

These can be specified on a specific track or in a global config.

 Copyright 2016, Apollo.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Apollo 2.0.2 documentation

Troubleshooting guide

Tomcat memory

Typically, the default memory allowance for the Java Virtual Machine (JVM) is too low. The memory requirements for Web
Apollo will depend on many variables, but in general, we recommend at least 1g for the heap size and 256m for the
PermGen size as a starting point.

Suggested Tomcat memory settings

export CATALINA_OPTS="-Xms512m -Xmx1g \
 -XX:+CMSClassUnloadingEnabled \
 -XX:+CMSPermGenSweepingEnabled \
 -XX:+UseConcMarkSweepGC \
 -XX:MaxPermSize=256m"

In cases where the assembled genome is highly fragmented, additional tuning of memory requirements and garbage
collection will be necessary to maintain the system stable. Below is an example from a research group that maintains
over 40 Apollo instances with assemblies that range from 1,000 to 150,000 scaffolds (reference sequences):

export CATALINA_OPTS="-Xmx12288m -Xms8192m \
 -XX:PermSize=256m \
 -XX:MaxPermSize=1024m \
 -XX:ReservedCodeCacheSize=64m \
 -XX:+UseG1GC \
 -XX:+CMSClassUnloadingEnabled \
 -Xloggc:$CATALINA_HOME/logs/gc.log \
 -XX:+PrintHeapAtGC \
 -XX:+PrintGCDetails \
 -XX:+PrintGCTimeStamps"

To change your settings, you can usually edit the setenv.sh script in $TOMCAT_BIN_DIR/setenv.sh where
$TOMCAT_BIN_DIR is the directory where the Tomcat binaries reside. It is possible that this file doesn’t exist by default, but it will be picked up when Tomcat restarts. Make sure that tomcat can read the file.

In most cases, creating the setenv.sh should be sufficient but you may have to edit a catalina.sh or another file directly depending on your system and tomcat setup. For example, on Ubuntu, the file /etc/default/tomcat7 often contains these settings.

Confirm your settings

Your CATALINA_OPTS settings from setenv.sh can be confirmed with a tool like jvisualvm or via the command line with the
ps tool. e.g. ps -ef | grep java should yield something like the following allowing you to confirm that your memory settings have been picked up.

root 9848 1 0 Oct22 ? 00:36:44 /usr/lib/jvm/java-7-openjdk-amd64/bin/java -Djava.util.logging.config.file=/usr/local/tomcat/current/conf/logging.properties -Djava.util.logging.manager=org.apache.juli.ClassLoaderLogManager -Xms1g -Xmx2g -XX:+CMSClassUnloadingEnabled -XX:+CMSPermGenSweepingEnabled -XX:+UseConcMarkSweepGC -XX:MaxPermSize=512m -Dj

Re-install after changing settings

If you start seeing memory leaks (java.lang.OutOfMemoryError: Java heap space) after doing an update, you might try
re-installing, as the live re-deploy itself can cause memory leaks or an inconsistent software state.

If you have named your web application named Apollo.war then you can remove all of these files from your webapps
directory and re-deploy.

	Run apollo deploy (or apollo release for javascript-minimization)

	Undeploy any existing Apollo instances

	Stop tomcat

	Copy the war file to the webapps folder

	Start tomcat

Tomcat permissions

Preferably, when running Apollo or any webserver, you should not run Tomcat as root. Therefore, when deploying your
war file to tomcat or another web application server, you may need to tune your file permissions to make sure Tomcat is
able to access your files.

On many production systems, tomcat will typically belong to a user and group called something like ‘tomcat’. Make sure
that the ‘tomcat’ user can read your “webapps” directory (where you placed your war file) and write into the annotations
and any other relevant directory (e.g. tomcat/logs). As such, it is sometimes helpful to add the user you logged-in as
to the same group as your tomcat user and set group write permissions for both.

Consider using a package manager to install Tomcat so that proper security settings are installed, or to use the jsvc
http://tomcat.apache.org/tomcat-7.0-doc/security-howto.html#Non-Tomcat_settings

Errors with JBrowse

JBrowse tools don’t show up in bin directory (or install at all) after install or typing install_jbrowse.sh

If the bin directory with JBrowse tools doesn’t show up after calling install_jbrowse.sh JBrowse is having trouble installing itself for a few possible reasons. If these do not work, please observe the JBrowse troubleshooting [http://jbrowse.org/code/JBrowse-1.12.1/docs/tutorial/#Troubleshooting] and JBrowse install [https://jbrowse.org/install/] pages, as well and the setup.log file created during the installation process.

cpanm or other components are not installed

Make sure the appropriate JBrowse libraries [http://gmod.org/wiki/JBrowse_Configuration_Guide#Making_a_New_JBrowse] are installed on your system.

If you see chmod: cannot access `web-app/jbrowse/bin/cpanm': No such file or directory make sure to install cpanm [http://search.cpan.org/~miyagawa/App-cpanminus-1.7040/lib/App/cpanminus.pm].

Git tool is too old

Git expects to clone a single branch which is supported in git 1.7.10 and greater. The output when that fails looks something like this:

Buildfile: build.xml

copy.apollo.plugin.webapp:

setup-jbrowse:

git.clone:
[exec] Result: 129

The solution is to upgrade git to 1.7.10 or greater or remove the line with the --single-branch option in build.xml.

Accessing git behind a firewall.

If you are behind a firewall, checking out code using the git:// protocol may not be allowed, but that is the default. The output will look something like this:

setup-jbrowse:

git.clone:
 [exec] Submodule 'src/FileSaver' (git://github.com/dkasenberg/FileSaver.js.git) registered for path 'src/FileSaver'
 [exec] Submodule 'src/dbind' (git://github.com/rbuels/dbind.git) registered for path 'src/dbind'

 [exec] Submodule 'src/xstyle' (git://github.com/kriszyp/xstyle.git) registered for path 'src/xstyle'
 [exec] Result: 1

with possibly more output below.

Type:

git config --global url."https://".insteadOf git://

in the command-line and then re-install using ./apollo clean-all ./apollo run-local (or deploy or release).

e.g. “Can’t locate Hash/Merge.pm in @INC” or “Can’t locate JBlibs.pm in @INC”

If you are trying to run the jbrowse binaries but get these sorts of errors, try running install_jbrowse.sh which will
initialize as many pre-requisites as possible including JBLibs and other JBrowse dependencies.

Rebuilding JBrowse

You can manually clear jbrowse files from web-app/jbrowse and re-run apollo deploy to rebuild JBrowse.

RequestError: Unable to load ... Apollo2/jbrowse/data/trackList.json status: 500

Apollo2 does fairly strict JSON validation so make sure your trackList.json file is valid JSON

If you still get this error after validating please forward the issue to our github issue tracker.

Complaints about 8080 being in use

Please check that you don’t already have a tomcat running netstat -tan | grep 8080. Sometimes tomcat does not exit
properly. ps -ef | grep java and then kill -9 the offending processing.

Note that you can also configure tomcat to run on different ports, or you can launch a temporary instance of apollo with
apollo run-local 8085 for example to avoid the port conflict.

Unable to open the h2 / default database for writing

If you receive an error similar to this:

SEVERE: Unable to create initial connections of pool.
org.h2.jdbc.JdbcSQLException: Error opening database:
 "Could not save properties /var/lib/tomcat7/prodDb.lock.db" [8000-176]

Then this is due to the production server trying to write an h2 instance in an area it doesn’t have permissions to. If
you use H2 (which is great for testing or single-user user, but not for full-blown production) make sure that:

You can modify the specified data directory for the H2 database in the apollo-config.groovy. For example, using the
/tmp/ directory, or some other directory:

url = "jdbc:h2:/tmp/prodDb;MVCC=TRUE;LOCK_TIMEOUT=10000;DB_CLOSE_ON_EXIT=FALSE"

This will write a H2 db file to /tmp/prodDB.db. If you don’t specify an absolute path it will try to write in the
same directory that tomcat is running in e.g., /var/lib/tomcat7/ which can have permission issues.

More detail on database configuration when specifying the apollo-config.groovy file is available in the
setup guide.

Grails cache errors

In some instances you can’t write to the default cache location on disk. Part of an example config log:

2015-07-03 14:37:39,675 [main] ERROR context.GrailsContextLoaderListener - Error initializing the application: null
java.lang.NullPointerException
 at grails.plugin.cache.ehcache.GrailsEhCacheManagerFactoryBean$ReloadableCacheManager.rebuild(GrailsEhCacheManagerFactoryBean.java:171)
 at grails.plugin.cache.ehcache.EhcacheConfigLoader.reload(EhcacheConfigLoader.groovy:63)
 at grails.plugin.cache.ConfigLoader.reload(ConfigLoader.groovy:42)

There are several solutions to this, but all involve updating the apollo-config.groovy file to override the caching
defined in the Config.groovy [https://github.com/GMOD/Apollo/blob/master/grails-app/conf/Config.groovy#L103].

Disabling the cache:

 grails.cache.config = {
 cache {
 enabled = false
 name 'globalcache'
 }
 }

This can also be done by removing the plugin. In grails-app/conf/BuildConfig [https://github.com/GMOD/Apollo/blob/master/grails-app/conf/BuildConfig.groovy] remove / comment out the line and re-building:

 compile ':cache-ehcache:1.0.5'

Disallow writing overflow to disk

Can be used for small instances

 grails.cache.config = {
 // avoid ehcache naming conflict to run multiple WA instances
 provider {
 name "ehcache-apollo-"+(new Date().format("yyyyMMddHHmmss"))
 }
 cache {
 enabled = true
 name 'globalcache'
 eternal false
 overflowToDisk false // THIS IS THE IMPORTANT LINE
 maxElementsInMemory 100000
 }
 }

Specify the overflow directory

Best for high load servers, which will need the cache. Make sure your tomcat /
web-server user can write to that directory:

 // copy from Config.groovy except where noted
 grails.cache.config = {
 ...
 cache {
 ...
 maxElementsOnDisk 10000000
 // this is the important part, below!
 diskStore{
 path '/opt/apollo/cache-directory'
 }
 }
 ...
 }

Information on the grails ehcache plugin [http://grails-plugins.github.io/grails-cache-ehcache/guide/usage.html] (see
“Overriding values”) and ehcache itself [http://ehcache.org/documentation/2.8/integrations/grails].

 Copyright 2016, Apollo.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Apollo 2.0.2 documentation

Migration guide

This guide explains how to prepare your Apollo 2.x instance, and to migrate data from previous Web Apollo versions
into 2.0.

In all cases you will need to follow the guide for setting up your 2.x instance.

Migration from Evaluation to Production:

If you are running your evaluation/development version using ./apollo run-local when you setup your production
instance, any prior annotations will use a separate database.

If you are using the same production instance you can use scripts to delete all annotations and preferences:

scripts/delete_all_features.sh

or just the annotations:

scripts/delete_only_features.sh

If you want to start from scratch (including reloading organisms and users), you can just drop the database (when the
server is not running) and the proper tables will be recreated on startup.

Migration from 2.0.X to 2.0.Y on production:

	Backup your database (to be safe).

	Use your old apollo-config.groovy to create a new war file.

	Turn off tomcat and remove the old apollo directory in the webapps folder.

	Copy in new .war file with the same name.

	Restart tomcat and you are ready to go.

Migration from 1.0 to 2.0:

We provide examples in the form of [migration scripts](https://github.com/gmod/apollo/tree/master/docs/web_services/
examples) in the docs/web_services/examples directory. These tools are also described in the command line tools
section.

We have written many of the command line tools examples using the groovy language, but mostly any
language will work (Perl, shell/curl, Python, etc.).

Migrate Annotations

We provide a [migration script](https://github.com/gmod/apollo/tree/master/docs/web_services/examples/groovy/
migrate_annotations1to2.groovy) that connects to a single Web Apollo 1 instance and populates the annotations for an
organism for a set of sequences / (confusingly called tracks as well). It would be best to develop your script on a
development instance of Apollo2 for restricted sequences.

To get the scripts working properly, you’ll need to provide the list of sequences (or tracks) to migrate for each
organism. You can get the list of tracks by either using the database (select * from tracks ;) or looking in the Web
Apollo annotations directory

ls -1 /opt/apollo/annotations/ | grep Annotations | grep -v history | paste -s -d"," -

Migrate Users

You have to add users de novo using something like the add_users.groovy
script [https://github.com/gmod/apollo/tree/master/docs/web_services/examples/groovy/add_users.groovy]. In this case you
create a csv file with the email, name, password, and role (‘user’ or ‘admin’). This is passed into the add_users.groovy
script and users are added.

From Web Apollo 1, you should be able to pull user names out of the database select * from users ;, but there is not
much overlap between users in Web Apollo1.x and Apollo2.x.

If you have only a few users, however, just adding them manually on the users will likely be easier.

Add Organisms

If possible adding organisms on the organisms tab is the easiest option if you only have a handful of organisms.

The [add_organism.groovy script](https://github.com/gmod/apollo/tree/master/docs/web_services/examples/groovy/
add_organism.groovy) can help automate this process if you have a large number of migrations to handle.

 Copyright 2016, Apollo.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Apollo 2.0.2 documentation

Permissions guide

Global

	admin: access to everything

	user: only guarantees a login with permissions configured on organism basis

Organism

Can only view things related to that organism.

	read: view / search only, no annotation

 Annotations: lock detail / coding
 RefSeq: hide export
 Organism: hide
 User: hide
 Group: hide
 Preferences: hide
 JBrowse: disable UcA track

	export: same as read, but can use the export screen

 RefSeq: show export

	write: same as above, but can add / edit annotations

 Annotations: allow editing
 JBrowse: enable UcA track

	admin: access to everything for that organism

 Organism: show
 User: show
 Group: show
 Preferences: (still hide)

Table of permissions:

Permission	Annotator	Users/groups	Annotations	Organism
READ	visible / locked	hide	visible / no export	visible
EXPORT	visible / locked	hide	visible / export	visible
WRITE	visible + editable	hide	visible / export	visible
ADMIN	visible + editable	visible	visible /export	visible + admin functions
NONE	not available	not available	not available	not visible

The Preference panel is available only for GLOBAL admin.

 Copyright 2016, Apollo.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Apollo 2.0.2 documentation

Automated testing architecture

The Apollo unit testing framework uses the grails testing guidelines extensively, which can be reviewed here:
http://grails.github.io/grails-doc/2.4.3/guide/testing.html

Our basic methodology is to run the full test suite with the apollo command:

apollo test

More specific tests can also be run for example by running specific commands for grails test-app

grails test-app :unit-test

This runs ALL of the tests in “test/unit”. If you want to test a specific function then write it something like this:

grails test-app org.bbop.apollo.FeatureService :unit

Notes about the test suites:

	@Mock includes any domain objects you’ll use. Unit tests don’t use the database.

	The setup() function is run for each test

	The test is composed of blocks of code with when: and then:. You have to have both or it is not a test.

Example test:

@TestFor(FeatureService)
@Mock([Sequence,FeatureLocation,Feature])
 class FeatureServiceSpec extends Specification {
 void setup(){}
 void "convert JSON to Feature Location"(){

 when: "We have a valid json object"
 JSONObject jsonObject = new JSONObject()
 Sequence sequence = new Sequence(name: "Chr3",
 seqChunkSize: 20, start:1, end:100, length:99).save(failOnError: true)
 jsonObject.put(FeatureStringEnum.FMIN.value,73)
 jsonObject.put(FeatureStringEnum.FMAX.value,113)
 jsonObject.put(FeatureStringEnum.STRAND.value, Strand.POSITIVE.value)

 then: "We should return a valid FeatureLocation"
 FeatureLocation featureLocation =
 service.convertJSONToFeatureLocation(jsonObject,sequence)
 assert featureLocation.sequence.name == "Chr3"
 assert featureLocation.fmin == 73
 assert featureLocation.fmax == 113
 assert featureLocation.strand ==Strand.POSITIVE.value
} }

There are 3 “special” types of things to test, which are all important and reflect the grails special functions:
Domains, Controllers, Services. They will all be in the “test” directory and all be suffixed with “Spec” for a Spock
test.

Chado

If you test with the chado export you will need to make sure you load ontologies into your chado database or integration steps will fail. If you don’t specify chado in your apollo-config.groovy then no further action would be necessary.

./scripts/load_chado_schema.sh -u nathandunn -d apollo-chado-test -s chado-schema-with-ontologies.sql.gz -r

 Copyright 2016, Apollo.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Apollo 2.0.2 documentation

How to contribute code to Apollo

Audience

These guidelines are for developers of Apollo software, whether internal or in the broader community.

Basic principles of the Apollo-flavored GitHub Workflow [http://guides.github.com/overviews/flow/]

Principle 1: Work from a personal fork

	Prior to adopting the workflow, a developer will perform a one-time setup to create a personal Fork of apollo and will subsequently perform their development and testing on a task-specific branch within their forked repo. This forked repo will be associated with that developer’s GitHub account, and is distinct from the shared repo managed by GMOD.

Principle 2: Commit to personal branches of that fork

	Changes will never be committed directly to the master branch on the shared repo. Rather, they will be composed as branches within the developer’s forked repo, where the developer can iterate and refine their code prior to submitting it for review.

Principle 3: Propose changes via pull request of personal branches

	Each set of changes will be developed as a task-specific branch in the developer’s forked repo, and then create a pull request [https://github.com/GMOD/Apollo/compare] will be created to develop and propose changes to the shared repo. This mechanism provides a way for developers to discuss, revise and ultimately merge changes from the forked repo into the shared Apollo repo.

Principle 4: Delete or ignore stale branches, but don’t recycle merged ones

	Once a pull request has been merged, the task-specific branch is no longer needed and may be deleted or ignored. It is bad practice to reuse an existing branch once it has been merged. Instead, a subsequent branch and pull-request cycle should begin when a developer switches to a different coding task.

	You may create a pull request in order to get feedback, but if you wish to continue working on the branch, so state with “DO NOT MERGE YET”.

Table of contents

	One Time Setup - Forking a Shared Repo
	Step 1 - Backup your existing repo (optional)

	Step 2 - Fork apollo via the Web

	Step 3 - Clone the Fork Locally

	Step 4 - Configure the local forked repo

	Step 5 - Configure .bashrc to show current branch (optional)

	Typical Development Cycle
	Refresh and clean up local environment
	Step 1 - Fetch remotes

	Step 2 - Ensure that ‘master’ is up to date

	Create a new branch

	Changes, Commits and Pushes

	Reconcile branch with upstream changes
	Fetching the upstream branch

	Rebasing to avoid Conflicts and Merge Commits

	Dealing with merge conflicts during rebase

	Advanced: Interactive rebase

	Submitting a PR (pull request)

	Reviewing a pull request

	Respond to TravisCI tests

	Respond to peer review

	Repushing to a PR branch

	Merge a pull request

	Celebrate and get back to work

	GitHub Tricks and Tips

	References and Documentation

One Time Setup - Forking a Shared Repo

The official shared Apollo repository is intended to be modified solely via pull requests that are reviewed and merged by a set of responsible ‘gatekeeper’ developers within the Apollo development team. These pull requests are initially created as task-specific named branches within a developer’s personal forked repo.

Typically, a developer will fork a shared repo once, which creates a personal copy of the repo that is associated with the developer’s GitHub account. Subsequent pull requests are developed as branches within this personal forked repo. The repo need never be forked again, although each pull request will be based upon a new named branch within this forked repo.

Step 1 - Backup your existing repo (optional)

The Apollo team has recently adopted the workflow described in this document. Many developers will have an existing clone of the shared repo that they have been using for development. This cloned local directory must be moved aside so that a proper clone of the forked repo can be used instead.

If you do not have an existing local copy of the shared repo, then skip to Step 2 below.

Step 2 - Fork apollo via the Web

The easiest way to fork the apollo repository is via the GitHub web interface:

	Ensure you are logged into GitHub as your GitHub user.

	Navigate to the apollo shared repo at https://github.com/GMOD/apollo.

	Notice the ‘Fork’ button in the upper right corner. It has a number to the right of the button.
[image:]

	Click the Fork button. The resulting behavior will depend upon whether your GitHub user is a member of a GitHub organization. If not a member of an organization, then the fork operation will be performed and the forked repo will be created in the user’s account.

	If your user is a member of an organization (e.g., GMOD or acme-incorporated), then GitHub will present a dialog for the user to choose where to place the forked repo. The user should click on the icon corresponding to their username.
[image:]

	If you accidentally click the number, you will be on the Network Graphs page and should go back.

Step 3 - Clone the Fork Locally

At this point, you will have a fork of the shared repo (e.g., apollo) stored within GitHub, but it is not yet available on your local development machine. This is done as follows:

Assumes that directory ~/MI/ will contain your Apollo repos.
Assumes that your username is MarieCurie.
Adapt these instructions to suit your environment
> cd ~/MI
> git clone git@github.com:MarieCurie/apollo.git
> cd apollo

Notice that we are using the SSH transport to clone this repo, rather than the HTTPS transport. The telltale indicator of this is the git@github.com:MarieCurie... rather than the alternative https://github.com/MarieCurie....

Note: If you encounter difficulties with the above git clone, you may need to associate your local public SSH key with your GitHub account. See Which remote URL should I use? [https://help.github.com/articles/which-remote-url-should-i-use/] for information.

Step 4 - Configure the local forked repo

The git clone above copied the forked repo locally, and configured the symbolic name ‘origin’ to point back to the remote GitHub fork. We will need to create an additional remote name to point back to the shared version of the repo (the one that we forked in Step 2). The following should work:

Assumes that you are already in the local apollo directory
> git remote add upstream https://github.com/GMOD/apollo.git

Verify that remotes are configured correctly by using the command git remote -v. The output should resemble:

upstream https://github.com/GMOD/apollo.git (fetch)
upstream https://github.com/GMOD/apollo.git (push)
origin git@github.com:MarieCurie/apollo.git (fetch)
origin git@github.com:MarieCurie/apollo.git (push)

Step 5 - Configure .bashrc to show current branch (optional)

One of the important things when using Git is to know what branch your working directory is tracking. This can be easily done with the git status command, but checking your branch periodically can get tedious. It is easy to configure your bash environment so that your current git branch is always displayed in your bash prompt.

If you want to try this out, add the following to your ~/.bashrc file:

function parse_git_branch()
{
 git branch 2> /dev/null | sed -e '/^[^*]/d' -e 's/* \(.*\)/ \1/'
}
LIGHT_GRAYBG="\[\033[0;47m\]"
LIGHT_PURPLE="\[\033[0;35m\]"
NO_COLOR="\[\033[0m\]"
export PS1="$LIGHT_PURPLE\w$LIGHT_GRAYBG\$(parse_git_branch)$NO_COLOR \$ "

You will need to open up a new Terminal window (or re-login to your existing terminal) to see the effect of the above .bashrc changes.

If you cd to a git working directory, the branch will be displayed in the prompt. For example:

~ $
~ $ # This isn't a git directory, so no branch is shown
~ $
~ $ cd /tmp
/tmp $
/tmp $ # This isn't a git directory, so no branch is shown
/tmp $
/tmp $ cd ~/MI/apollo/
~/MI/apollo fix-feedback-button $
~/MI/apollo fix-feedback-button $ # The current branch is shown
~/MI/apollo fix-feedback-button $
~/MI/apollo fix-feedback-button $ git status
On branch fix-feedback-button
Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)
 ... remaining output of git status elided ...

Typical Development Cycle

Once you have completed the One-time Setup above, then it will be possible to create new branches and pull requests using the instructions below. The typical development cycle will have the following phases:

	Refresh and clean up local environment

	Create a new task-specific branch

	Perform ordinary development work, periodically committing to the branch

	Prepare and submit a Pull Request (PR) that refers to the branch

	Participate in PR Review, possibly making changes and pushing new commits to the branch

	Celebrate when your PR is finally Merged into the shared repo.

	Move onto the next task and repeat this cycle

Refresh and clean up local environment

Git will not automatically sync your Forked repo with the original shared repo, and will not automatically update your local copy of the Forked repo. These tasks are part of the developer’s normal cycle, and should be the first thing done prior to beginning a new development effort and creating a new branch. In addition, this

Step 1 - Fetch remotes

In the (likely) event that the upstream repo (the apollo shared repo) has changed since the developer last began a task, it is important to update the local copy of the upstream repo so that its changes can be incorporated into subsequent development.

> git fetch upstream # Updates the local copy of shared repo BUT does not affect the working directory, it simply makes the upstream code available locally for subsequent Git operations. See step 2.

Step 2 - Ensure that ‘master’ is up to date

Assuming that new development begins with branch ‘master’ (a good practice), then we want to make sure our local ‘master’ has all the recent changes from ‘upstream’. This can be done as follows:

> git checkout master
> git reset --hard upstream/master

The above command is potentially dangerous if you are not paying attention, as it will remove any local commits to master (which you should not have) as well as any changes to local files that are also in the upstream/master version (which you should not have). In other words, the above command ensures a proper clean slate where your local master branch is identical to the upstream master branch.

Some people advocate the use of git merge upstream/master or git rebase upstream/master instead of the git reset --hard. One risk of these options is that unintended local changes accumulate in the branch and end up in an eventual pull request. Basically, it leaves open the possibility that a developer is not really branching from upstream/master, but is branching from some developer-specific branch point.

Create a new branch

Once you have updated the local copy of the master branch of your forked repo, you can create a named branch from this copy and begin to work on your code and pull-request. This is done with:

> git checkout -b fix-feedback-button # This is an example name

This will create a local branch called ‘fix-feedback-button’ and will configure your working directory to track that branch instead of ‘master’.

You may now freely make modifications and improvements and these changes will be accumulated into the new branch when you commit.

If you followed the instructions in Step 5 - Configure .bashrc to show current branch (optional), your shell prompt should look something like this:

~/MI/apollo fix-feedback-button $

Changes, Commits and Pushes

Once you are in your working directory on a named branch, you make changes as normal. When you make a commit, you will be committing to the named branch by default, and not to master.

You may wish to periodically git push your code to GitHub. Note the use of an explicit branch name that matches the branch you are on (this may not be necessary; a git expert may know better):

> git push origin fix-feedback-button # This is an example name

Note that we are pushing to ‘origin’, which is our forked repo. We are definitely NOT pushing to the shared ‘upstream’ remote, for which we may not have permission to push.

Reconcile branch with upstream changes

If you have followed the instructions above at Refresh and clean up local environment, then your working directory and task-specific branch will be based on a starting point from the latest-and-greatest version of the shared repo’s master branch. Depending upon how long it takes you to develop your changes, and upon how much other developer activity there is, it is possible that changes to the upstream master will conflict with changes in your branch.

So it is a good practice to periodically pull down these upstream changes and reconcile your task branch with the upstream master branch. At the least, this should be performed prior to submitting a PR.

Fetching the upstream branch

The first step is to fetch the update upstream master branch down to your local development machine. Note that this command will NOT affect your working directory, but will simply make the upstream master branch available in your local Git environment.

> git fetch upstream

Rebasing to avoid Conflicts and Merge Commits

Now that you’ve fetched the upstream changes to your local Git environment, you will use the git rebase command to adjust your branch

> # Make that your changes are committed to your branch
> # before doing any rebase operations
> git status
 # ... Review the git status output to ensure your changes are committed
 # ... Also a good chance to double-check that you are on your
 # ... task branch and not accidentally on master
> git rebase upstream/master

The rebase command will have the effect of adjusting your commit history so that your task branch changes appear to be based upon the most recently fetched master branch, rather than the older version of master you may have used when you began your task branch.

By periodically rebasing in this way, you can ensure that your changes are in sync with the rest of Apollo development and you can avoid hassles with merge conflicts during the PR process.

Dealing with merge conflicts during rebase

Sometimes conflicts happen where another developer has made changes and committed them to the upstream master (ideally via a successful PR) and some of those changes overlap with the code you are working on in your branch. The git rebase command will detect these conflicts and will give you an opportunity to fix them before continuing the rebase operation. The Git instructions during rebase should be sufficient to understand what to do, but a very verbose explanation can be found at Rebasing Step-by-Step [http://gitforteams.com/resources/rebasing.html]

Advanced: Interactive rebase

As you gain more confidence in Git and this workflow, you may want to create PRs that are easier to review and best reflect the intent of your code changes. One technique that is helpful is to use the interactive rebase capability of Git to help you clean up your branch prior to submitting it as a PR. This is completely optional for novice Git users, but it does produce a nicer shared commit history.

See squashing commits with rebase [http://gitready.com/advanced/2009/02/10/squashing-commits-with-rebase.html] for a good explanation.

Submitting a PR (pull request)

Once you have developed code and are confident it is ready for review and final integration into the upstream version, you will want to do a final git push origin ... (see Changes, Commits and Pushes above). Then you will use the GitHub website to perform the operation of creating a Pull Request based upon the newly pushed branch.

See submitting a pull request [https://help.github.com/articles/creating-a-pull-request].

Reviewing a pull request

The set of open PRs for the apollo can be viewed by first visiting the shared apollo GitHub page at https://github.com/GMOD/apollo.

Click on the ‘Pull Requests’ link on the right-side of the page:
[image:]

Note that the Pull Request you created from your forked repo shows up in the shared repo’s Pull Request list. One way to avoid confusion is to think of the shared repo’s PR list as a queue of changes to be applied, pending their review and approval.

Respond to TravisCI tests

The GitHub Pull Request mechanism is designed to allow review and refinement of code prior to its final merge to the shared repo. After creating your Pull Request, the TravisCI tests for apollo will be executed automatically, ensuring that the code that ‘worked fine’ on your development machine also works in the production-like environment provided by TravisCI. The current status of the tests can be found near the bottom of the individual PR page, to the right of the Merge Request symbol:
[image:]
[image:]

TBD - Something should be written about developers running tests PRIOR to TravisCI and the the PR. This may already be in the README.html, but should be cited.

Respond to peer review

The GitHub Pull Request mechanism is designed to allow review and refinement of code prior to its final merge to the shared repo. After creating your Pull Request, the TravisCI tests for apollo will be executed automatically, ensuring that the code that ‘worked fine’ on your development machine also works in the production-like environment provided by TravisCI. The current status of the tests can be found

Repushing to a PR branch

It’s likely that after created a Pull Request, you will receive useful peer review or your TravisCI tests will have failed. In either case, you will make the required changes on your development machine, retest your changes, and you can then push your new changes back to your task branch and the PR will be automatically updated. This allows a PR to evolve in response to feedback from peers. Once everyone is satisfied, the PR may be merged. (see below).

Merge a pull request

One of the goals behind the workflow described here is to enable a large group of developers to meaningfully contribute to the Apollo codebase. The Pull Request mechanism encourages review and refinement of the proposed code changes. As a matter of informal policy, Apollo expects that a PR will not be merged by its author and that a PR will not be merged without at least one reviewer approving it (via a comment such as +1 in the PR’s Comment section).

Celebrate and get back to work

You have successfully gotten your code improvements into the shared repository. Congratulations! The branch you created for this PR is no longer useful, and may be deleted from your forked repo or may be kept. But in no case should the branch be further developed or reused once it has been successfully merge. Subsequent development should be on a new branch. Prepare for your next work by returning to Refresh and clean up local environment.

GitHub Tricks and Tips

	Add ?w=1 to a GitHub file compare URL to ignore whitespace differences.

References and Documentation

	The instructions presented here are derived from several sources. However, a very readable and complete article is Using the Fork-and-Branch Git Workflow [http://blog.scottlowe.org/2015/01/27/using-fork-branch-git-workflow/]. Note that the article doesn’t make clear that certain steps like Forking are one-time setup steps, after which Branch-PullRequest-Merge steps are used; the instructions below will attempt to clarify this.

	New to GitHub? The GitHub Guides [http://guides.github.com] are a great place to start.

	Advanced GitHub users might want to check out the GitHub Cheat Sheet [https://github.com/tiimgreen/github-cheat-sheet/blob/master/README.html]

 Copyright 2016, Apollo.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Apollo 2.0.2 documentation

Architecture notes

Overview and quick-start

See the build doc for the official quick-start guide.

Minimally, the apollo application can be launched by running apollo run-local. This starts up a temporary tomcat
server automatically. It will also simply use a in-memory H2 database if a different database configuration isn’t setup
yet.

For development purposes, you can also enable automatic code reloading which helps for fast iteration.

	grails -reloading run-app will allow changes to the server side code to be auto-reloaded.

	ant devmode will provide auto-reloading of GWT code changes

	scripts/copy_client.sh will copy the plugin code to the web-apps folder to update the plugin javascript

The apollo script automatically does several of these functions.

Note: Changes to domain/database objects will require an application restart, but, a very cool feature of our
application is that the whole database doesn’t need reloading after a database change.

If you look at the apollo binary, you’ll see that the code for grails run-app and others are automatically launched
during apollo run-local.

Also, as always during web development, yoe will want to clear the cache to see changes (“shift-reload” on most
browsers).

Overview

[image:]

PDF schema [https://github.com/GMOD/Apollo/blob/master/docs/schemaupdates.pdf]

The main components of the Apollo 2.x application are:

	Grails 2 Server [http://grails.org] with the current version set in the application.properties [https://github.com/GMOD/Apollo/blob/master/application.properties]

	Datastore: configured via Hibernate / Grails whcih can use most anything supported by JDBC / hibernate (primarily,
Postgres, MySQL, H2)

	JBrowse / Apollo Plugin: JS / HTML5 JBrowse doc [http://jbrowse.org/code/JBrowse-1.11.6/docs/] and main
site [http://jbrowse.org]

	GWT client: provides the sidebar. Can be written in another front-end language, as well. GWT
doc [http://www.gwtproject.org/]

Basic layout

	Grails code is in normal grails directories under “grails-app”

	GWT-only code is under “src/gwt”
	Code shared between the client and the server is under “src/gwt/org/bbop/apollo/gwt/shared”

	Client code is under “client” (still)

	Tests are under “test”

	Old (presumably inactive code) is under “src/main/webapp”

	New source (loaded into VM) is under “src/java” or “src/groovy” except for grails specific code.

	Web code (not much) is either under “web-app” (and where jbrowse is copied) or under “grails-app/assets” (these are
compiled down).

	GWT-specifc CSS can also be found in: “src/gwt/org/bbop/apollo/gwt/client/resources/” but it inherits the CSS on its
current page, as well.

Main components

The main components of the Apollo 2.x application (the four most important are 1 through 4):

	The domain classes; these are the main objects

	Controllers, which route those domains and provide URL routes; provides rest services

	Views: annotator and index and the only ones that matter for Apollo

	Services: very important because all of the controllers should typically have routes, then particular business logic
should go into the service.

	Configuration files: The grails-app/conf folder contains central conf files, but the apollo-config.groovy
file in your root directory can override these central configs (i.e. it is not necessary to edit DataSource.groovy)

	Grails-app/assets: all your javascript live here. efficient way to deliver this stuff

	Resources: web-app directory: css, images, and the jbrowse directory + WA plugin are initialized here.

	Client directory: The WA plugin is copied or compiled along with jbrowse to the web-app directory

Schema/domain classes

Domain classes: the most important domain class everywhere is the Feature; it is the key to everything that we do. The
way a domain class is built:

The domain classes represent a database table. The way it works with “Feature”, which is inherited by many other
classes, is that all features are stored in the same table, the difference is that in SQL, there is a class table and
when it pulls these tables from the database — it queries it and then converts it into the right class. There are a
number of constrains you can set.

Very important: the hasMany maps the one-to-many relationship within the database. It can have many locations. the
parentFeatureRelationships is where you map this one-to-many relationship. You also have to have a single item
relationship.

You can add extra methods to the domain objects, but this is generally not necessary.

Note: In the DataStore configuration, setting called “auditable = true” means that a new table, a feature auditing tool,
is keeping track of history for the specified objects

Feature class

All features inherit an ontologyId and specify a cvTerm, although CvTerms are being phased out.

Subclasses of “Feature” will specify the ontologyId, but “Feature” itself is too generic, for example, so it does not
have an ontologyId.

Sequence class

Sequences are the method for WA to grabs sequences used to have a cache built-in mechanism doesn’t want to have that
anymore to avoid running into memory problems.

Feature locations

Features such as genes all have a feature location belongs to a particular sequence. If you have a feature with
subclasses, it can exist within many locations, and each location belongs to its own sequence.

Feature relationship

Feature relationships can define parent/child relationships as well as SO terms i.e. SO “part_of” relationships

Feature enums

The FeatureString enum: allows for mapping names for concepts, and it is useful to use these enums without worrying
about string mappings inside the application.

Running the application

If you go through and run this grails application when you send the URL request, then methods that are sent through the
AnnotationEditorController (formerly called AnnotationEditorService) dynamically calls a method using handleOperation.

The AnnotatorController serves the page that the annotator is on. This doesn’t map to a particular domain object.

In most cases when we have these methods, it unwraps the data that is sent through into JSON object as a set of
variables. Then it is processed into java objects and routed back to JSON to send back.

When annotator creates a transcript, it is then released to requestHandlingService and it sends it to an annotation
event, which sends it to a WebSocket, and it’s then broadcasted to everyone.

Websockets and listeners

All clients subscribe to AnnotationNotifications for new transcripts and events.

If an add_transcript operation occurs, this is broadcasted via the websocket. The server side broadcasts this event, and
then it does a JSON roundtrip to render the results and sends the return object that belongs to an AnnotationEvent.

Procedure transcript is created –> goes to the server –> adds a transcript locally –> announces it to everyone.

We used to use long polling request model for “push notifications” but now we use Spring with the SockJS, which uses
websockets but it can fall back to long-polling.

There is another component of the broadcasting called brokerMessagingTemplate is the converter to broadcast the event

Controllers

Grails controllers are a fairly easy concept for “routing” URLs and info to methods in the code.

Services

Grails services are classes that perform business logic. (In IntelliJ, these are indicated by green buttons on the
definitions to show that these are Injected Spring Bean classes)

The word @Transactional means that every operation that is not private is handled via a transaction. In the old model
there were a lot of files that were recreated each time, even though they did the same. Now we define a class and can
use it again and again. And there can be transactions within transaction. I could also call other services within
services.

addTranscript generateTranscript

The different services do exactly what their name implies. It may not always be clear in what particular service each
class should be in, but it can be changed later. It is easy also to make changes to the names as well.

Grails views

	Most of Views are under grails-app
	everything conforms to the MVC backend model for the Grails application.

	Most of java, css, html is under web-app directory
	Application logic for groovy, gwt, java, etc live here. we could put our old servlets there, but not recommended.

Main configuration

The central configuration files are defined in grails-app/conf/ folder, however the user normally only edits their
personal config in apollo-config.groovy. That is because the user config file will override those in the central
configuration. See Configure.html for details.

Database configuration

The “root” database configuration is specified by grails-app/conf/DataSource.groovy but it is generally over-ridden by
the user’s apollo-config.groovy

It is recommended that the user takes sample-postgres-apollo-config.groovy or sample-mysql-apollo-config.groovy and
copies it to apollo-config.groovy for their application.

The default database driver is the h2 database, which is an “embedded” database that doesn’t require installing postgres
or mysql, but it is not generally seen as performant as postgres or mysql though.

Note: there are three environments that can be setup: a development environment, a test environment, and a production
environment, and these are basically assigned automatically depending on how you deploy the app.

	Development environment - “apollo run-local” or “apollo debug”

	Test environment - “apollo test”

	Production environment - “apollo deploy” or “apollo release”

Note: If there are no users and no annotations, a bootstrap procedure can also automatically create some annotations and
users to start up the app so there is something in there to begin with.

UrlMapping configuration:

The UrlMappings are stored in grails-app/conf/UrlMappings.groovy

The UrlMappings sets up a mapping from routes to controllers

Standard and customized mappings go in here. The way we route jbrowse to organism data directories is also controlled
here. The organismJBrowseDirectory is set for a particular session, per user. If none specified, it brings up a default
one.

Build configuration

The build configuration is stored in grails-app/conf/BuildConfig.groovy

If there are libraries that are missing are are to be added, you can add them here.

Additionally, the build system uses the “apollo” script and the “build.xml” to control the compilation and resource
steps.

Central config

The central configuration is stored in grails-app/conf/Config.groovy

The central Grails config contains logging, app config, and also can reference external configs. The external config can
override settings without even touching the application code using this method

In our application, we use the apollo-config.groovy then everything in there supersedes this file.

The log4j area can enable logging levels. You can turn on the “debug grails.app” to output all the webapollo debug info,
or also set the “grails.debug” environment variable for java too.

There is also some Apollo configuration here, and it is mostly covered by the configuration section.

GWT web-app

When GWT compiles, it loads files into the web-app directory. When it loads up annotator, it goes to annotator index
(the way things get loaded) it does an include annotator.nocache.js file, and with that, it includes all GWT stuff for
the /annotator/index route. The src/gwt/org/bbop/apollo/gwt/ contains much code and the
src/gwt/org/bbop/apollo/gwt/Annotator.gwt.xml is a central config file for the GWT web-app.

User interface definitions

A Bootstrap/GWT interface handles the tabs on the right for the new UI. The annotator object is at the root of
everything.

Example definition: MainPanel.ui.xml

Tests

Unit tests

Unit tests and some basic javascript tests are running on Travis-CI (see .travis.yml for example script).

You can also run “apollo test” to run the tests locally. It will use the “test” database configuration automatically.

Also see the testing notes for more details.

 Copyright 2016, Apollo.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Apollo 2.0.2 documentation

Command line tools

The command line tools offer a number of interesting features that can be used to help setup and retrieve data from the
application.

Overview

The command line tools are located in docs/web_services/examples, and they are mostly small scripts that automate the
usage of the the web services API.

get_gff3.groovy

Example:

get_gff3.groovy -organism Amel_4.5 -username admin@webapollo.com \
 -password admin_password -url http://localhost:8080/apollo > my output.gff3

This command can accept an -output argument to output to file, or the stdout can be redirected.

The -username and -password can be specified via the command line or if omitted, the user will be prompted.

get_fasta.groovy

Example:

get_fasta.groovy -organism Amel_4.5 -username admin@webapollo.com \
 -password admin_password -seqtype cds/cdna/peptide -url http://localhost:8080/apollo > output.fa

This command can accept an -output argument to output to file, or the stdout can be redirected.

The -username and -password can be specified via the command line (similar to get_gff3.groovy) or if omitted, the user
will be prompted.

add_users.groovy

Example:

add_users.groovy -username admin@webapollo.com -password admin_password \
 -newuser newuser@test.com -newpassword newuserpass \
 -destinationurl http://localhost:8080/apollo

The -username and -password refer to the admin user, and they can also be specified via stdin instead of the command
line if they are omitted.

A list of users specified in a csv file can also be used as input.

add_organism.groovy

Example:

add_organism.groovy -name yeast -url http://localhost:8080/apollo/ \
 -directory /opt/apollo/yeast -username admin@webapollo.com -password admin_password

The -directory refers to the jbrowse data directory containing the output from prepare-refseqs.pl, flatfile-to-json.pl,
etc. The -blatdb is optional, -genus, and -species are optional.

The -username and -password refer to the admin user, and they can also be specified via stdin instead of the command
line if they are omitted.

delete_annotations_from_organism.groovy

Example:

docs/web_services/examples/groovy/delete_annotations_from_organism.groovy -destinationurl http://localhost:8080/apollo\
 -organismname honeybee2

This script will delete any annotations associated with a given organism.

 Copyright 2016, Apollo.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Apollo 2.0.2 documentation

Web Service API

The Apollo Web Service API is a JSON-based REST API to interact with the annotations and other services of Apollo.
Both the request and response JSON objects can contain feature information that are based on the Chado schema. We use
the web services API scripting examples [https://github.com/GMOD/Apollo/blob/master/docs/web_services/examples/]
and we also use them in the Apollo JBrowse plugin.

The most up to date Web Service API documentation is deployed from the source code rest-api-doc annotations.

See http://icebox.lbl.gov/Apollo2/jbrowse/web_services/api [http://icebox.lbl.gov/Apollo2/jbrowse/web_services/api/] for details

What is the Web Service API?

For a given Apollo server url (e.g., https://localhost:8080/apollo or any other Apollo site on the web), the
Web Service API allows us to make requests to the various “controllers” of the application and perform operations.

The controllers that are available for Apollo include the AnnotationEditorController, the OrganismController, the
IOServiceController for downloads of data, and the UserController for user management.

Most API requests will take:

	The proper url (e.g., to get features from the AnnotationEditorController, we can send requests to
(e.g http://localhost/apollo/annotationEditor/getFeatures)

	username - an authorized user (also uses session if none specified)

	password - password (also uses session if none specified)

	organism - (if applicable) the “common name” of the organism for the operation – will also pull from the “user
preferences” if none is specified.

	track/sequence - (if applicable) reference sequence name (shown in sequence panel / genomic
browse)

	uniquename - (if applicable) the uniquename is a UUID [https://docs.oracle.com/javase/7/docs/api/java/util/UUID.html]
used to guarantee a unique ID

Errors If an error has occurred, a proper HTTP error code (most likely 400 or 500) and an error message. is

returned, in JSON format:

{ "error": "error message" }

Additional Notes

If you are sending password you care about over the wire (even if not using web services) it is highly recommended
that you use https (which adds encryption ssl) instead of http.

Examples are provided in the docs/web_services/examples/groovy/ directory for using SSL and optionally ignoring
certificates.

Example

curl -b cookies.txt -c cookies.txt -e "http://localhost:8080" \
 -H "Content-Type:application/json" \
 -d "{'username': 'demo', 'password': 'demo'}" \
 "http://localhost:8080/apollo/Login?operation=login"

Login expects two parameters: username and password, and optionally rememberMe for a
persistent cookie.

A successful login returns a empty JSON object

Cookies

The Apollo Login creates a JSESSIONID cookie and rememberMe cookie (if applicable) and these can be used in
downstream API requests (for example, by setting -b cookies.txt in curl will preserve the cookie in the request).

You can also pass username/password to individual API requests and these will authenticate each individual request.

Representing features in JSON

Most requests and responses will contain an array of feature JSON objects named features. The feature object is
based on the Chado feature, featureloc, cv, and cvterm tables.

{
 "residues": "$residues",
 "type": {
 "cv": {
 "name": "$cv_name"
 },
 "name": "$cv_term"
 },
 "location": {
 "fmax": $rightmost_intrabase_coordinate_of_feature,
 "fmin": $leftmost_intrabase_coordinate_of_feature,
 "strand": $strand
 },
 "uniquename": "$feature_unique_name"
 "children": [$array_of_child_features]
 "properties": [$array_of_properties]
}

where:

	residues - A sequence of alphabetic characters representing biological residues (nucleic acids, amino acids)
[string]

	type.cv.name - The name of the ontology [string] type.name - The name for the cvterm [string]

	location.fmax - The rightmost/maximal intrabase boundary in the linear range [integer]

	location.fmin - The leftmost/minimal intrabase boundary in the linear range [integer]

	strand - The orientation/directionality of the location. Should be 0, -1 or +1 [integer]

	uniquename - The unique name for a feature [string]

	children - Array of child feature objects [array]

	properties - Array of properties (including frameshifts for transcripts) [array]

Note that different operations will require different fields to be set (which will be elaborated upon in each operation
section).

Web Services API

The most up to date Web Service API documentation is deployed from the source code rest-api-doc annotations

See http://icebox.lbl.gov/Apollo2/jbrowse/web_services/api for details

 Copyright 2016, Apollo.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	Apollo 2.0.2 documentation

Example Build Script on Unix with MySQL

This is an example build script. It may NOT be appropriate for your environment
but does demonstrate what a typical build process might look like on a
Unix system using MySQL.

Please consult our Setup and Configuration
documentation for additional information.

Install prereqs
apt-get install tomcat8 git ant openjdk-7-jdk nodejs
Upped tomcat memory per Apollo devs instructions:
echo "export CATALINA_OPTS="-Xms512m -Xmx1g \
 -XX:+CMSClassUnloadingEnabled \
 -XX:+CMSPermGenSweepingEnabled \
 -XX:+UseConcMarkSweepGC \
 -XX:MaxPermSize=256m" >> /etc/default/tomcat8

Download and extract their tarball
wget https://github.com/GMOD/Apollo/archive/2.0.2.tar.gz mv 2.0.2.tar.gz Apollo-2.0.2.tar.gz
tar xf Apollo-2.0.2.tar.gz
Setup apollo mysql user and database
CREATE USER 'apollo'@'localhost' IDENTIFIED BY 'THE_PASSWORD';
CREATE DATABASE `apollo-production`;
GRANT ALL PRIVILEGES ON `apollo-production`.* To 'apollo'@'localhost' IDENTIFIED BY 'THE_PASSWORD';
Configure apollo for mysql.
cd ~/src/Apollo-2.0.2
Let's store the config file outside of the source tree.
mkdir ~/apollo.config
Copy the template
cp sample-mysql-apollo-config.groovy ~/apollo.config/apollo-config.groovy
ln -s ~/apollo.config/apollo-config.groovy
For now, turn off tomcat8 so that we can see if the locally-run version works service tomcat8 stop
Run the local version, which verifies install reqs, and does a bunch of stuff (see below)
cd Apollo-2.0.2
./apollo run-local

Some of what the Apollo installer does:
Clones a bunch of git submodules into apollo-2.0.2/src
Does a bunch of java compiling.
Downloads and installs grails for you here: $HOME/.grails .
Installs perl modules here: $HOME/.cpanm
Installs java stuff here: $HOME/.java and $HOME/.m2

If a pre-installed instance:
rm -rf /var/lib/tomcat/webapps/apollo
rm -f /var/lib/tomcat/webapps/apollo.war
Startup tomcat again
service tomcat8 start

... with javascript minimization:
./apollo release
... without javascript minimization
./apollo deploy
Above creates this file: target/apollo-2.0.2.war
sudo cp target/apollo-2.0.2.war /var/lib/tomcat/webapps/apollo.war

Prepare JBrowse data
Add the FASTA assembly
~/src/Apollo-2.0.2/bin/prepare-refseqs.pl \
--fasta /research/dre/assembly/assembly1.fasta.gz \
--out ~/organisms/dre

Add annotations
~/src/Apollo-2.0.2/bin/flatfile-to-json.pl \
--gff /research/dre/annotation/FINAL_annotations/ssc_v4.gff \
--type mRNA --trackLabel Annotations --out ~/organisms/dre

In interface point to directory ~/organisms/dre

 Copyright 2016, Apollo.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Apollo 2.0.2 documentation

Index

 Copyright 2016, Apollo.
 Created using Sphinx 1.3.5.

 _static/up-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/ajax-loader.gif

PostgreSQLSetup.html

 Navigation

 		
 index

 		Apollo 2.0.2 documentation »

PostgreSQL Setup guide

There are a couple ways to setup a PostgreSQL. One would be as a trusted user (e.g. postgres):

Setup as a non-trusted user “database_user” with a secure password for a production database named “apollo-production”

		On debian/ubuntu/redhat/centOS,requires postgres user to execute command, hence “sudo su postgres”

sudo su postgres -c "createuser -RDIElPS database_user"
sudo su postgres -c "createdb -E UTF-8 -O database_user apollo-production"

		On macOSX/homebrew, not necessary to login to postgres user

createuser -RDIElPS database_user
createdb -O database_user apollo-production

		In apollo-config.groovy your username will be the name of the user and you should provide the password.

Setup as a trusted postgres user with a database named “apollo-production”

		On debian/ubuntu/redhat/centOS,requires postgres user to execute command, hence “sudo su postgres”

sudo su postgres -c "createuser -RDIElPS $PGUSER"
sudo su postgres -c "createdb -E UTF-8 -O $PGUSER apollo-production"

		On macOSX/homebrew, not necessary to login to postgres user

createuser -RDIElPS $PGUSER
createdb -O $PGUSER apollo-production

		In apollo-config.groovy your username will be postgres and you should comment out the password line.

Note: Using a tool like pgtune [http://pgtune.leopard.in.ua/] might help to tune PostgreSQL settings.

 © Copyright 2016, Apollo.
 Created using Sphinx 1.3.5.

_static/down-pressed.png

TestScript.html

 Navigation

 		
 index

 		Apollo 2.0.2 documentation »

Apollo Testing Script

2016-05-09

M. Munoz-Torres

Note: The following steps are meant for testing purposes only, not for training manual annotators.

Apollo General Information

		The Apollo website:
http://GenomeArchitect.org

		The article describing Apollo can be found at:http://genomebiology.com/2013/14/8/R93/abstract

		The public Apollo honey bee (Apis mellifera) demonstration site is available at:
http://genomearchitect.org/WebApolloDemo/

		You may find our user guide at:
http://genomearchitect.org/web_apollo_user_guide

		You may find a few slide presentations on the ‘How Tos’ of Apollo at:
http://www.slideshare.net/MonicaMunozTorres/

		Apollo at GMOD page:
http://www.gmod.org/wiki/WebApollo

		Apollo installation and configuration guide
http://genomearchitect.readthedocs.io/en/latest/

If testing the Apollo demo, go to: http://genomearchitect.org/WebApolloDemo/

Testing a Apollo Instance

Test the “Sequences” screen (formerly Select tracks)

		Select one scaffold / group (containing annotations) and check that you are able to export GFF3 and FASTA from the File / Export menu option.

		Check that you are able to query the entire genome using BLAT from this window using the Tools / Search sequence menu option.

		Check the use of filters (e.g. group/scaffold/chromosome name, lenght) and review pagination and number of results shown.

		Clicking on group/scaffold/chromosome name link should take you to the corresponding sequence track in the main window.

		Test that you are able to Log out from the upper-right corner, top-level menu.

		For Administrators: From top-level menu choose the option Tools -> Manage Users.

6.1) Create a new user and grant read, write, and publish permissions.

6.2) Logout and log back in as the newly created user, then create new annotations and modify existing ones (if available).

###Testing functions in the main window

		Check the display of evidence available on all tracks by using “check” and “uncheck” clicks on the list of available tracks.

		Drag and drop a gene onto the “User-created Annotations” (U-cA) area.

		Test top-level menu options in the main window.

9.1) Test functions on each menu option:

9.1.1) Login: login/logout.

9.1.2) File

/Open (Test that data can be loaded locally using URLs (File / Open / Remote URLs)).

/Add Combination Track (see 16. below)

/Add Sequence Search Track (perform search test)

9.1.3) Tools (see 9.2)

9.1.4) View: follow menu options to go to “Changes” and “Sequences” (select sequences) page, check the ability to set and clear highlights, show plus/minus strands, show track label, resize quantitative tracks, color by CDS (also tested in 10), and changing the color scheme (dark or light).

9.1.5) Help: All links go to a new screen.

9.2) From “Tools” menu, query genome with BLAT using a sequence:

E.g: Housekeeping gene Calpain small subunit 1 CPNS1, CAPNS1, CAPN4, CAPNS (UniProt).

sp|P04632|CPNS1_HUMAN Calpain small subunit 1 MFLVNSFLKGGGGGGGGGGGLGGGLGNVLGGLISGAGGGGGGGGGGGGGGGGGGGGTAMRILGGVISAISEAAAQYNPEPPPPRTHYSNIEANESEEVRQFRRLFAQLAGDDMEVSATELMNILNKVVTRHPDLKTDGFGIDTCRSMVAVMDSDTTGKLGFEEFKYLWNNIKRWQAIYKQFDTDRSGTICSSELPGAFEAAGFHLNEHLYNMIIRRYSDESGNMDFDNFISCLVRLDAMFRAFKSLDKDGTGQIQVNIQEWLQLTMYS

9.3) Clear highlight using the command from the ‘View’ menu.

		Search for an indexed gene (e.g. in honey bee demo CSN2_DANRE (it’s on Group1.37:152689..155265)) by typing the gene name on the search box.

		Zoom in (double click) to inspect last exon (5’-3’) of the displayed gene and:

11.1) change intron/exon boundary (dragging)

11.2) check the recalculated ORF

11.3) color by CDS

		‘Zoom to Base Level’ to reveal DNA Track and test sequence annotation alterations:

12.1) Insertions

12.2) Deletions

12.3) Substitutions

		‘Zoom back out’, then reveal right-click menu.

13.1) Test:

13.1.1) Get Sequence, Get GFF3

13.1.2) Delete, Merge, Split, Duplicate, Make Intron, Move to Opposite Strand.

13.1.3) Set Translation Start, Set Translation End, Set Longest ORF, Set Readthrough Stop Codon.

13.1.4) Set to Downstream Splice Donor, Set to Upstream Splice Donor, Set to Downstream Splice Acceptor, Set to Upstream Splice Acceptor.

13.1.5) Undo, Redo

13.1.6) Show History, and test the ability to revert to any of the previous versions of the feature by clicking on the arrow buttons to the right of each version.

13.1.7) Annotation Information Editor: Name, Symbol, DBXRefs, Comments, Gene Ontology IDs, and PubMed IDs.

13.2) Use annotation in progress + feature from an evidence track to test: set as 3’ end, set as 5’ end, set both ends.

		Check that the URL can be used for sharing work (on a different browser): bring up different browser window and paste the shared URL. Check real-time update by dragging and dropping another exon to the model on the left (same strand); check that “non-canonical boundaries” warning sign appears as appropriate. Last, delete an exon, Redo/Undo to test.

		Test Export of User-created Annotations to Chado, GFF3, FASTA

		Combination tracks: test that arithmetic combination of quantitative tracks is possible by combining tracks using the menu option: File / Add combination track

Test the “Changes” screen (formerly “Recent Changes”)

		Check all filters, pagination, and number of results shown.

		Clicking on group name link should take you to the corresponding group track in the main window.

		Test all File Menu as was done for the “Sequences” screen.

_static/down.png

search.html

 Navigation

 		
 index

 		Apollo 2.0.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Apollo.
 Created using Sphinx 1.3.5.

_static/plus.png

_images/githubPullRequest.png
2 Pull requests o

3

_static/comment.png

_images/1.png
Usemame

Password

Repeat Password

First Name

Last Name
(Rememberme gegicior & Log

_images/githubTestStatus.png
All checks have passed
1 successful check

Show all checks

This branch is up-to-date with the base branch
Merging can be performed automatically.

_images/architecture2.png
3) Simpler Extensible, Transparent Architecture

Architecture moved to a single queryable data store and a simplified
installation and configuration. Allows embedded or remote datastore for
local or large production setup.

e@ec

Annotators

GWT / Bootstrap used o e
on front-end to
provide rich

application behavior.
Communication with
server is via REST and
WebSockets for
flexibility, speed, and
service re-use. 4

v

Annotation Engine (Server)

Grails controllers (a
J2EE servlet) routes
requests to the
appropriate JBrowse
data directory for a
given organism.

JBrowse data
for Organism 1

—

. —
[Frrem———

Single Data Store
PostgreSQL, MySQL
MongoD8, ElasticSearcn

apollo-stress-tests/suite2/jmeter-dev-stress-test-notes.html

 Navigation

 		
 index

 		Apollo 2.0.2 documentation »

Apollo stress test using Apache JMeter

jmeter-dev-stress-test-1.jmx

The script has two user-defined variables:

		server (localhost)

		instance_name (apollo)

The test is performed on data from Apis mellifera.

Datasets:

		A. mellifera reference genome [http://hymenopteragenome.org/beebase/sites/hymenopteragenome.org.beebase/files/data/Amel_4.5_scaffolds.fa.gz]

		A. mellifera Official Gene Set v3.2 [http://hymenopteragenome.org/beebase/sites/hymenopteragenome.org.beebase/files/data/consortium_data/amel_OGSv3.2.gff3.gz]

The datasets can be processed as described here [http://genomearchitect.readthedocs.io/en/latest/Data_loading/#data-generation-pipeline].

jmeter-dev-stress-test-2.jmx

The script has two user-defined variables:

		server (localhost)

		instance_name (apollo)

The test is performed on data from Apis mellifera as well as Bos taurus.

Datasets:

		Bos taurus reference genome [http://128.206.12.216/drupal/sites/bovinegenome.org/files/data/umd3.1/UMD3.1_chromosomes.fa.gz]

		Bos taurus RefSeq Annotations for protein coding genes [http://128.206.12.216/drupal/sites/bovinegenome.org/files/data/umd3.1/RefSeq_UMD3.1.1_protein_coding.gff3.gz]

The datasets can be processed as described here [http://genomearchitect.readthedocs.io/en/latest/Data_loading/#data-generation-pipeline].

###Users
Each of the test script utilizes several user profiles. To add the same user profiles as described in the script, make use of add_users.groovy with example-users-for-stress-test.csv as input.

add_users.groovy -inputfile example-users-for-stress-test.csv --username <admin username> --password <admin password> --destinationurl <URL for apollo>

Note: After this step, make sure to grant organism permissions to each user. This can be done via the Users tab in Annotator Panel of Apollo.

 © Copyright 2016, Apollo.
 Created using Sphinx 1.3.5.

_images/githubForkButton.png
¥ Fork 11
&

Fork your own copy of monarch-Initiative/
monarch-app to your

_images/githubForkTarget.png
Where should we fork this repository?

@YourUsernameHere

_images/githubTestProgress.png
Some checks haven’t completed yet Hide all checks

1 pending check

® continuous-integration/travis-ci/pr — The Travis Cl build is in progress

This branch is up-to-date with the base branch
Merging can be performed automatically.

f Merge pull request You can also open this in GitHub Desktop or view command line instructions.

Details

_images/2.png
Version 2.0-SNAPSHOT Built with Grails 2.4.4

_images/3.png
[lILY File View Tools Help colin.diesh@gmail.com Honeybee v/ JRef Sequence | Group1.1 diesh@gm... |G |

] T T—T o Lomear [[o | e
) (=) O O @ @) |crouwt1 - |Groupii1.1382403(138Mb) | Go 5 —_—
250,000 500,000 750,000 . 1,000,000 1,250,000 Ret Soquence
Search All Types J
e = = v = e M < — n -
] - Cae [1 % &l P oo b ow
4 Ta - N
* 1 ||| Name Type Length
] Y
—t—t —

o

_static/minus.png

